Capstone, Dickinson, Braught

From Foss2Serve
Revision as of 13:20, 5 June 2018 by GBraught (Talk | contribs)
Jump to: navigation, search



Course Computer Science Senior Seminar
Institution Dickinson College
Instructor(s) Grant Braught, Dickinson College
Term First offered as COMP491/492 in Academic Year 2016-17 at Dickinson College. Revised for the 2017-18 Academic Year.
Course Overview A two-semester required senior capstone including perspective on and experience with H/FOSS projects. In the first semester students complete readings, exercises and activities that familiarize them with H/F/OSS philosophy/community/tools. They complete exercises to help them select an H/FOSS project in which to participate and form teams. They then begin a series of exercises that include: Installing the project as a user; Installing the project as a developer; Rebuilding the project from source; Running the test suite; Verifying bugs from the issue tracker (Bug Gardening); and Fixing bugs. During the second semester students continue work on their selected H/F/OSS project fixing bugs and proposing additional contributions to the project that have value both to them and their H/FOSS community. Students also complete readings on contemporary and ethical issues in computing and participate in class discussions on these topics.
Course Length {{{courselength}}}
Student Characteristics Typically offered to 10-20 senior computer science majors per year.
Prerequisites This course was designed for use in the final year of a Computer Science major at a small liberal arts college. Students having completed the first three years of an undergraduate CS curriculum should be well prepared for this course. Our students typically have completed the core courses and are competent in: Object Oriented Programming (2 courses in Java), Data Structures (in Java), Analysis of Algorithms, Programming Languages (including C/C++, Python, Scheme, Prolog), Organization and Architecture. They may also have completed additional electives (e.g. Operating Systems, Networking, AI, Databases) and other core courses (e.g. Theory of Computation).
Infrastructure The course outlined below assumes 28 75-minute course meetings (2 per week) per semester, plus a 3-hour final exam period. Students are expected to average between 8 and 12 hours of work outside of class per week.

Many of the activities and assignments rely on the use of particular technologies. These can be substituted with equivalent technologies but are currently:

  • Virtual Box
  • Ubuntu 16.04
  • Slack
  • Moodle (Wiki/Forums)

Learning Objectives

Students will:

  1. Recognize the ethical, legal and social implications of computing.
  2. Be exposed to H/F/OSS and Software Engineering topics.
  3. Improve their ability to work (reading/modifying/testing) within a substantial existing code base.
  4. Interact with a community of developers and users.
  5. Deepen their ability to write clearly and develop their mastery of specific forms of disciplinary writing.
  6. Be prepared for graduate study or a professional career in computing.

Methods of Assessment

The following assessment mechanisms will be used:

  • Forum Postings: Students will post (in Moodle) discussion questions based on reading assignments to guide the subsequent in-class discussion. [LO: 1,2,6]
  • Wiki Reflections: Students will complete reflective writings on a wiki (in Moodle):
    • Following each discussion; clarifying and/or expanding their understanding of the material. [LO: 1,2,5,6]
    • Each week of project work; summarizing actions, accomplishments, existing challenges and proposing work for the following week. [LO: 3,4,5,6]
  • Live-Texting: Students will live-text (using Slack) while working on the projects as documentation of their efforts. [LO: 3,4]
  • Standup Meetings: During project work, each class meeting will begin with each group giving 1-2 minute summary of their work from the prior week and highlighting current challenges. [LO: 5,6]
  • Homework: Early course meetings (during project selection) specific homework assignments are given, each with its own deliverable. [LO: 2,3,4]
  • Project Checkpoint Presentations: Project teams will schedule presentations for each of the project check points. These will be 10 minute, in-class presentations with content dependent upon the specific check point. [LO: 2,3,4,5,6]

Course Outline

COMP491 at Dickinson College Fall 2016

Notes to Instructor

Will fill in as first course offering progresses

Moving Forward

Will fill in as first course offering progresses

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

CC license.png

Materials linked to by this page may be governed by other licenses.

Personal tools
Learning Resources
HFOSS Projects